Dependent Gaussian mixture models for source separation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Mixture Models for Blind Source Separation

Neural Independent Component Analysis (ICA) algorithms based on unimodal source distributions provide acceptable performances in the case of Blind Source Separation (BSS) of super-gaussian sources. However, their convergence profiles are significantly slower in the case of sub-gaussian sources. In some situations it is necessary to deal with sub-gaussian signals in the form of noise or others. ...

متن کامل

Source Separation with Gaussian Process Models

In this paper we address a method of source separation in the case where sources have certain temporal structures. The key contribution in this paper is to incorporate Gaussian process (GP) model into source separation, representing the latent function which characterizes the temporal structure of a source by a random process with Gaussian prior. Marginalizing out the latent function leads to t...

متن کامل

Bayesian source separation with mixture of Gaussians prior for sources and Gaussian prior for mixture coefficients

Abstract. In this contribution, we present new algorithms to source separation for the case of noisy instantaneous linear mixture, within the Bayesian statistical framework. The source distribution prior is modeled by a mixture of Gaussians [1] and the mixing matrix elements distributions by a Gaussian [2]. We model the mixture of Gaussians hierarchically by mean of hidden variables representin...

متن کامل

Super-Gaussian Mixture Source Model for ICA

We propose an extension of the mixture of factor (or independent component) analyzers model to include strongly super-gaussian mixture source densities. This allows greater economy in representation of densities with (multiple) peaked modes or heavy tails than using several Gaussians to represent these features. We derive an EM algorithm to find the maximum likelihood estimate of the model, and...

متن کامل

Fuzzy Gaussian Mixture Models

In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2012

ISSN: 1687-6180

DOI: 10.1186/1687-6180-2012-239